Wecome to HeBei ShengShi HongBang Cellulose Technology CO.,LTD.

  • fff1
  • fff2
  • fff3
  • fff4
  • Group 205.webp1
HeBei ShengShi HongBang Cellulose Technology CO.,LTD.
hpmc dextran hydroxypropyl methyl cellulose
hpmc dextran 70 hydroxypropyl methylcellulose
hpmc solubility in cold water

Hydroxypropyl methylcellulose (HPMC) is a multi-functional polymer that garners extensive attention across various industries due to its impressive solubility characteristics in water and a wide array of applications. As an industry veteran with years of firsthand experience, I have witnessed how the solubility of HPMC in water significantly enhances product performance, making it a go-to choice for formulators. To understand HPMC's solubility in water, it is crucial to first delve into its chemical structure. HPMC is a non-ionic cellulose ether derived from alkali cellulose through a reaction with methyl chloride and propylene oxide. This distinctive structure is pivotal to its solubility. When HPMC is dispersed in cold water, it hydrates and swells rapidly, forming clear solutions or gels depending on the temperature and concentration. Its solubility in cold water renders it highly versatile, allowing it to be utilized in various dosages and applications. One factor that influences HPMC’s solubility is the degree of substitution (DS) and the molar substitution (MS). A higher degree of substitution results in more hydrophobic methoxy and hydroxypropyl groups on the cellulose backbone, enhancing its water solubility. Industrial applications leverage this property by selecting HPMC grades with optimal DS and MS to tailor performance for specific requirements. For instance, in the pharmaceutical domain, this characteristic is essential for controlled drug delivery systems, where HPMC acts as a rate-controlling agent. Temperature plays a significant role in the solubility dynamics of HPMC. Known for its reversible thermal gelation properties, HPMC will dissolve in cold water but can precipitate out of solution when exposed to rising temperatures, exhibiting gel formation. This unique property is expertly harnessed in construction applications, where HPMC is utilized to improve the water retention and workability of cement-based materials. Mastery of this thermoreversible behavior allows product developers to fine-tune formulations for enhanced efficiency and performance reliability. hpmc solubility in water My professional involvement with HPMC spans a broad spectrum of industries. In personal care products, its water solubility is an asset in formulating non-sticky lotions and creams that offer consistent viscosity over a range of temperatures. In the food industry, as a thickener or stabilizer, HPMC promises uniformity and stability, maintaining product integrity under varying storage conditions. The transparency and viscosity of HPMC solutions make them ideal for eye drops and other ophthalmic preparations, where clarity and uniform distribution of active ingredients are paramount. Despite its advantages, HPMC’s solubility in water poses challenges . For instance, incorrect dispersion can lead to clumping, which compromises the efficiency and clarity of solutions. Through my experience, I recommend the gradual addition of HPMC to the vortex of a well-stirred cold water solution to prevent lump formation. This method ensures even hydration and dissolution, maximizing the functional benefits of HPMC for the intended application. Regulatory compliance and product consistency are of utmost importance in any formulation involving HPMC. Adherence to standards set by bodies such as the U.S. Pharmacopeia (USP) fortifies the trustworthiness of HPMC-based products, providing assurance that they meet safety and efficacy benchmarks essential for consumer confidence. In conclusion, the solubility of HPMC in water is a defining feature that enhances its application potential across industries. By leveraging its unique properties, formulators can innovate and produce high-performance products with the reliability and efficacy that modern consumers demand. By sharing my expertise and insights, I aim to empower industry professionals to make informed decisions that capitalize on HPMC’s immense capabilities.

  • 40000tons
    Group_492

    Production

  • 20+years
    Group_493

    Experience

  • 5000+
    Group_494

    Acreage

Product Category
  • hpmc for gypsum plaster

    In the world of industrial applications, particularly in the realm of pharmaceuticals and construction, two polymers often come to the forefront Hydroxyethyl Cellulose (HEC) and Hydroxypropyl Methylcellulose (HPMC). Both are cellulose derivatives, but their distinct properties and applications make choosing between them a critical decision based on specific project requirements. HEC is favored in scenarios where high levels of water retention and thickening are paramount . This makes it ideal for use in paint formulations, where it acts as a rheology modifier, ensuring a smooth application and consistent pigment distribution. Moreover, in the construction industry, HEC finds its role in tile adhesives and cement-based mortars, enhancing workability and open time. Its water-retentive abilities allow for extended working times and prevent rapid drying, which is crucial for optimum setting and bonding. In contrast, HPMC is often chosen for its superior film-forming capabilities and its ability to withstand higher temperatures, making it indispensable in the pharmaceutical industry. Used as a binder and controlled-release agent in tablet formulations, HPMC ensures the stability and efficacy of medications over time. Additionally, in building and construction applications, HPMC's robust adhesive properties and resistance to environmental conditions make it an excellent choice for rendering and plastering tasks. A deep dive into the synthesis of these polymers reveals that HEC is derived by reacting ethylene oxide with alkali cellulose, while HPMC is produced by the reaction of alkali cellulose with propylene oxide and methyl chloride. These reactions imbue each polymer with its unique characteristics, influencing their solubility, viscosity, and thermal stability. For example, HEC dissolves readily in water, forming clear solutions, whereas HPMC requires a more gradual introduction to water, with full hydration enhancing its thickening efficiency. hec vs hpmc From an expert perspective, the choice between HEC and HPMC should be guided by the specific conditions of use. In a project with fluctuating temperatures or one requiring a protective film, HPMC's thermal resilience is unmatched. On the other hand, when dealing with formulations where prolonged moisture retention is critical, as seen in certain adhesive applications, HEC stands out with its exceptional hydrophilicity. Authoritative studies have supported the use of HPMC in pharmaceutical coatings where consistency and reliability are non-negotiable due to its non-toxic nature and FDA approval for direct contact with food and drugs. Similarly, trust in HEC is evident in its long-standing use in latex paint systems, where its compatibility and stability ensure a prolonged shelf-life and superior application properties. Ultimately, the decision between HEC and HPMC hinges on a nuanced understanding of the end-use environment and desired performance outcomes. Leveraging the profound expertise inherent in these materials allows industry professionals to make informed, authoritative choices, enhancing both the quality and efficiency of their products.

  • hpmc thickener

    Provided by: HeBei ShengShi HongBang Cellulose Technology CO.,LTD. Address: HeBei ShengShi HongBang Cellulose Technology CO.,LTD, Room 1904, Building B, Wanda Office Building, JiaoYu Road, Xinji City, Hebei Province Phone: +86 13180486930 | Email: 13180486930@163.com | Mobile: +86 13180486930 Website: www.sshbhpmc.com Introduction to Hydroxypropyl Methyl Cellulose HPMC Hydroxypropyl Methyl Cellulose HPMC is a high-performance, non-ionic cellulose ether widely recognized for its versatility across multiple industries. Derived from natural cellulose via a strenuous chemical modification and purification process, HPMC possesses unique physical and chemical properties that grant it exceptional value in formulations demanding thickening, binding, water retention, film formation, and surface activity. Product Name: Hydroxypropyl Methyl Cellulose HPMC Nature: Non-ionic cellulose ether Origin: Produced by HeBei ShengShi HongBang Cellulose Technology CO.,LTD. Official Product Page: https://www.sshbhpmc.com/hydroxypropyl-methyl-cellulose-hpmc.html General Description: Hydroxypropyl methylcellulose (HPMC), a non-ionic cellulose ether, is derived from natural cellulose through a rigorous series of chemical processes. VIEW FULL PRODUCT SPECIFICATIONS Industry Trends and Market Dynamics for Hydroxypropyl Methyl Cellulose HPMC (2024 Update) The global Hydroxypropyl Methyl Cellulose HPMC market has experienced substantial growth, propelled by rising demand in construction, pharmaceutical, food, personal care, and ceramics industries. Rapid urbanization, environmentally conscious formulations, and advancements in dry-mix mortar technologies have driven adoption globally. Construction Segment: Major driver due to water retention, workability, and open time benefits in cementitious products ( Construction and Building Materials Journal ). Pharma/Food Grade Demand Rising: Clean-label trends boost HPMC as a vegetarian capsule shell, tablet binder, or food emulsifier ( See Pharmacology Review ). Enhanced R&D Focus: Research into surface-modified and multi-functional HPMC grades to support eco-friendly construction and greater dosage efficiency. Asia-Pacific remains the dominant region, attributed to vigorous infrastructure projects, while Europe sees strong uptake in green building materials and pharma applications. According to Grand View Research , the market is expected to maintain a >5% CAGR through 2029. Hydroxypropyl Methyl Cellulose HPMC Technical Parameters (Industry Standard) Parameter Standard Value / Range Unit Test Method Hydroxypropoxy content 4-12 % ASTM D2363 Methoxy content 19-30 % ASTM E222 Molecular Weight (MW) 20,000–1,200,000 Da NMR Viscosity (2% in water, 20°C) 5–100,000 mPa·s Brookfield pH of 1% solution 5.0–8.0 - ISO 6353 Moisture Content ≤5.0 % Oven Method Appearance White to Off-white powder - Visual Gel Temperature 58–90 °C GB/T 9776 Data Visualization: Hydroxypropyl Methyl Cellulose HPMC Specifications & Megatrends Below are interactive charts visualizing HPMC specification trends, parameter distributions, and application market shares (2021-2024): Main Application Scenarios for Hydroxypropyl Methyl Cellulose HPMC Tile Adhesives, Renders, Self-Leveling Compounds: Outstanding water retention, improved workability, and open time. Enhances bond strength and spreadability ( Journal of Thermal Analysis ). Dry-mortar, Grouts, and Plasters: Prevents rapid drying and cracking. Enables smooth application even in hot, dry climates. Pharmaceuticals: Used as tablet binder, film-coating agent, and capsule shell (vegetarian alternative to gelatin) – meets stringent pharmacopoeia standards. Food Industry: Emulsifier, stabilizer, and fat replacer. Supports vegetarian, allergy-friendly, and clean-label product development. Ceramics & Detergents: Functions as a binder and thickener, improving shape retention and powder dispersion. Personal Care & Cosmetics: Used in creams, lotions, shampoos for texture and stability ( Cosmetics Journal ). EEAT: Professionalism, Authoritativeness & Trust in HPMC Expertise: HeBei ShengShi HongBang Cellulose Technology CO.,LTD. boasts over 15 years of industry know-how. Our technical staff regularly collaborates with construction research bodies ( ResearchGate ). Authority: Our products comply with GB/T 9776, ASTM D2363, USP/NF and European Pharmacopeia standards, establishing trust and broad international acceptance. Trustworthiness: Hundreds of construction material and pharmaceutical partners worldwide select " Hydroxypropyl Methyl Cellulose HPMC " for its verifiable consistency and safe, traceable supply-chain. References: Please visit industry leading forums such as ScienceDirect HPMC Topic , Cellulose Ether Forum , and ResearchGate for further insights. FAQ: Professional Technical FAQ for Hydroxypropyl Methyl Cellulose HPMC Q1: What is the main material origin and structure of Hydroxypropyl Methyl Cellulose HPMC ? A: It is synthesized by the etherification of pure, natural cellulose (commonly from wood pulp or cotton linters) to introduce hydrophilic hydroxypropyl and methyl groups. This changes the solubility, thermal gelation, and viscosity properties, forming a linear, high molecular weight polymer with adjusted functional groups ( ACS Publication ). Q2: What viscosity grades can be supplied, and how are they selected for end-use? A: We offer Hydroxypropyl Methyl Cellulose HPMC in viscosity grades ranging from 3,000 to 100,000 mPa·s or more (at 2% aqueous, 20°C). Construction mortars typically use 20,000–40,000 mPa·s, while pharmaceuticals prefer low-medium viscosity. Grade selection is based on required water retention, film thickness, or binding power in formulation. Q3: What are the typical particle sizes and bulk densities of HPMC powders? A: Standard mesh size ranges from 80 to 100 mesh, with bulk density of 0.30-0.55 g/cm³. Customization is available for specialized dispersibility or mixing requirements ( Cellulose Ether Forum ). Q4: Is Hydroxypropyl Methyl Cellulose HPMC compliant with international regulatory and safety standards? A: Yes, HPMC meets GB, ASTM, USP/NF, BP/EP, E464, and JECFA safety criteria for use in foods, pharmaceuticals, and industrial applications. It is non-ionic, non-toxic, and hypoallergenic ( FAO JECFA ). Q5: What is the recommended installation and mixing standard for construction use? A: For dry-mix mortar, use 0.2-0.5% by weight, ensuring even dispersion prior to water addition. Follow EN 998-1 or ASTM C270 for mortar mixing; always pre-wet mixing equipment and blend gradually into dry components to avoid lump formation. Q6: How does film formation and thermal gelation enhance material performance? A: Thermal gelation between 58–90°C imparts superior sag resistance and stability to cementitious layers. Film-forming properties ensure encapsulation of aggregates, improved finish, and dust control for food/pharma-grade applications ( PubMed ). Q7: Are there options for “rapid-dissolving” or “surface-modified” Hydroxypropyl Methyl Cellulose HPMC ? A: Yes, we offer fast-dispersing, self-wetting, and surface-treated HPMC grades to optimize mixing efficiency, especially for industrial-scale mortar, detergent, or pharmaceutical production. These grades exhibit quick hydration and low lumping ( Cellulose Ether Forum ). Why Choose HeBei ShengShi HongBang Cellulose Technology CO.,LTD. as Your Hydroxypropyl Methyl Cellulose HPMC Supplier? Proven Expertise: Our advanced production lines, international R&D team, and vigorous QC protocols guarantee consistent batch quality. Broad Customization: Tailored viscosity, particle size, and surface-modified grades available for all industrial and pharma/food specifications. Global Delivery: Timely supply and logistic support worldwide, with technical support for every application field. Full Compliance: Adherence to REACH, RoHS, and other global environmental, health, and safety protocols. Contact Our Specialists for More on Hydroxypropyl Methyl Cellulose HPMC : Website: https://www.sshbhpmc.com | Tel: +86 13180486930   | Email: 13180486930@163.com Address: HeBei ShengShi HongBang Cellulose Technology CO.,LTDRoom 1904, Building B, Wanda Office Building, JiaoYu Road, Xinji City, Hebei Province References & Further Reading Construction and Building Materials Journal: https://www.sciencedirect.com/science/article/pii/S0950061821013257 Pharmacology Review: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5629934/ Grand View Research – HPMC Market Report: https://www.grandviewresearch.com/industry-analysis/hydroxypropyl-methylcellulose-hpmc-market ACS Publications – HPMC Structure: https://pubs.acs.org/doi/10.1021/ma101259b Cellulose Ether Industry Forum: https://www.celluloseether.org/forums/ ScienceDirect – HPMC Topic: https://www.sciencedirect.com/topics/chemistry/hydroxypropyl-methylcellulose ResearchGate – HPMC Thread: https://www.researchgate.net/topic/Hydroxypropyl-Methylcellulose FAO JECFA: https://www.fao.org/jecfa/jecfa-home/en/ PubMed: https://pubmed.ncbi.nlm.nih.gov/34069747/

Get Free Quote or Can call us At Our Emergency Services

+86-131-8048-6930

Our Advantage
We have three
advantages
  • Group_497

    200000 Viscosities

    Excellent product

    We can produce pure products up to 200,000 viscosities

  • Group_496

    40000 tons

    High yield

    We don’t stop production all year round, and the annual output can reach 40,000 tons

  • Frame

    24 hours

    Quality service

    We provide 24-hours online reception service, welcome to consult at any time

———— Inquiry Form

Schedule A services


If you are interested in our products, you can choose to leave your information here, and we will be in touch with you shortly.


TOP